

Curriculum für das Masterstudium Circular Engineering an der Montanuniversität Leoben

Stammfassung verlautbart im Mitteilungsblatt der Montanuniversität Leoben am 09.06.2022, Stück Nr. 156

- Änderung 2023, verlautbart im Mitteilungsblatt vom 12.06.2023, Stück Nr. 147
- Änderung 2024, verlautbart im Mitteilungsblatt vom 12.06.2024, Stück Nr. 167
- Änderung 2025, verlautbart im Mitteilungsblatt vom 05.06.2025, Stück Nr. 175

Der Senat der Montanuniversität Leoben hat in seiner Sitzung am 4. Juni 2025 das von der Curriculumskommission "Circular Engineering und Responsible Consumption and Production" beschlossene und vom Rektorat gemäß § 22 Abs. 1 Z 12b Universitätsgesetz 2002 - UG nicht untersagte Curriculum für das Masterstudium Circular Engineering in der nachfolgenden Fassung der dritten Änderung gemäß § 25 Abs. 10a UG genehmigt.

Inhaltsverzeichnis

I. Allgemeine Bestimmungen

- § 1. Qualifikationsprofil
- § 2. Zuordnung des Studiums
- § 3. Rechtliche Grundlagen des Studiums
- § 4. Unterrichts- und Prüfungssprache
- § 5. Zulassung zum Studium
- § 6. Lehrveranstaltungen

II. Aufbau des Studiums

- § 7. Dauer und Gliederung des Studiums
- § 8. Pflichtfächer des Masterstudiums
- § 9. Gebundene Wahlfächer des Masterstudiums
- § 10. Freie Wahlfächer
- § 11. Masterarbeit
- § 12. Defensio

III. Prüfungsordnung

- § 13. Begriffsbestimmungen
- § 14. Prüfungsverfahren

IV. Studienabschluss und akademischer Grad

- § 15. Studienabschluss
- § 16. Beurteilung des Studienerfolgs
- § 17. Akademischer Grad

V. Schlussbestimmungen

- § 18. Inkrafttreten
- § 19. Übergangsbestimmungen

VI. Anhang

I. Allgemeine Bestimmungen

Qualifikationsprofil

§ 1. Das Masterstudium Circular Engineering hat zum Ziel, technisch-wissenschaftliche Kenntnisse im Bereich der ganzheitlichen Betrachtung von Produkten und Systemen über die gesamte Wertschöpfungskette zu vermitteln. Im Studium werden die Zirkularität von Produkten und Systemen auf technischwissenschaftlichem Niveau unterrichtet und damit bei den Studierenden hoch spezialisierte Kompetenzen entwickelt, vor allem hinsichtlich Ressourceneffizienz, Reduktion von Treibhausgasemissionen und der Entwicklung nachhaltiger, wiederverwendbarer und recycelbarer Produkte über die gesamte Wertschöpfungskette hinweg.

Circular Engineers beherrschen das Konzept der Zirkularität von Stoffflusssystemen vor allem auf der Produktionsseite: von primären Rohstoffen, den Produktionssystemen bis hin zum Produkt. Sie sind ebenso qualifiziert, die Herstellung von qualitätsgesicherten, sekundären Rohstoffen aus End of Life Produkten mittels nachhaltiger, innovativer Recyclingverfahren zu planen und umzusetzen.

Circular Engineers haben hoch spezialisierte Kenntnisse, Fertigkeiten und Kompetenzen, um eine entscheidende Rolle beim Übergang technologischer Prozesse in Richtung Circular Economy zu spielen: "Future Circular Engineers Engineer the Future."

Circular Engineers besetzen Schlüsselpositionen in Unternehmen, Institutionen und Organisationen, welche Abteilungen verknüpfen, um ein Produkt und auch den Produktionsprozess entlang des Stoffflusses von der Rohstoffgewinnung bis zum Recycling zu gestalten. Ressourcen- und Energieeffizienz sowie die Minimierung des ökologischen Fußabdruckes von Produkten und Produktionssystemen sind die Kern DNA von Circular Engineers.

Im Detail verfolgt das Masterstudium Circular Engineering die Vertiefung und Verwissenschaftlichung der Ausbildung in folgenden Bereichen:

- Breites, gesichertes Können in den Moduln
- Problemlösungskompetenz im eigenen Fachbereich und bei interdisziplinären Fragestellungen
- Sozial- und Führungskompetenz
- Unterstützung der Industrie durch Bereitstellung von Absolventinnen und Absolventen, die sowohl national als auch international einsetzbar sind
- Profilierung der Montanuniversität Leoben als Europäisches Ausbildungszentrum für Circular Engineering
- Etablierung als attraktives Studium für in- und ausländische Studierende, die bereits den akademischen Grad eines Bachelor of Science (BSc) im Bachelorstudium Circular Engineering oder einem vergleichbaren Bachelorstudium an einer anerkannten postsekundären Bildungseinrichtung erworben haben.

Zuordnung des Studiums

§ 2. Das Masterstudium Circular Engineering ist ein ingenieurwissenschaftliches Studium im Sinne des § 54 Abs. 1 Z 2 UG. Es dient der Vertiefung und Ergänzung der wissenschaftlichen Berufsvorbildung oder Berufsausbildung auf der Grundlage von Bachelorstudien.

Rechtliche Grundlagen des Studiums

§ 3. Rechtliche Grundlagen dieses Studiums sind:

 Das Universitätsgesetz 2002 (BGBI I Nr. 120/2002 idjgF) und der Satzungsteil Studienrechtliche Bestimmungen der Satzung der Montanuniversität Leoben, verlautbart im Mitteilungsblatt am 21.6.2010, Stück Nr. 92 idjgF

Unterrichts- und Prüfungssprache

- **§ 4.** (1) Die englische Sprache ist Unterrichts- und Prüfungssprache des Masterstudiums Circular Engineering. Davon ausgenommen sind die der Fremdsprachenausbildung dienenden Lehrveranstaltungen und Prüfungen, die in der jeweiligen Sprache abgehalten und geprüft werden.
- (2) Personen, deren Erstsprache nicht Englisch ist, haben die für den erfolgreichen Studienfortgang notwendigen Kenntnisse der englischen Sprache nachzuweisen. Für einen erfolgreichen Studienfortgang werden Englischkenntnisse auf Referenzniveau B2 des Gemeinsamen Europäischen Referenzrahmens für Sprachen vorausgesetzt. Als Nachweise gelten insbesondere die in § 4 Abs. 1 der Verordnung des Rektorats der Montanuniversität Leoben über die Zulassung zu ordentlichen Studien erforderlichen Sprachkenntnisse und -nachweise, MBI. 53. Stück 2023/2024 Nr. 91 idgF, genannten Zertifikate.

Zulassung zum Studium

- **§ 5.** (1) Voraussetzung für die Zulassung zum Masterstudium Circular Engineering ist der Abschluss eines fachlich in Frage kommenden Bachelorstudiums oder eines anderen fachlich in Frage kommenden Studiums mindestens desselben hochschulischen Bildungsniveaus an einer anerkannten inländischen oder ausländischen postsekundären Bildungseinrichtung.
- (2) Jedenfalls fachlich in Frage kommend im Sinne des Abs. 1 ist das Bachelorstudium Circular Engineering, sowie das Bachelorstudium Responsible Consumption and Production der Montanuniversität Leoben.
- (3) Zum Ausgleich wesentlicher fachlicher Unterschiede können Ergänzungsprüfungen im Ausmaß von max. 30 ECTS vorgeschrieben werden. Die Ergänzungsprüfungen sind bis zum Ende des zweiten Semesters des Masterstudiums abzulegen.

Lehrveranstaltungen

- **§ 6.** (1) Im Rahmen des Masterstudiums Circular Engineering werden folgende Arten von Lehrveranstaltungen angeboten:
 - Vorlesungen (VO) sind Lehrveranstaltungen, bei denen die Wissensvermittlung durch Vortrag der Lehrenden erfolgt. Die Prüfung findet in einem einzigen Prüfungsakt statt, der mündlich oder schriftlich oder schriftlich und mündlich stattfinden kann.
 - 2. In Übungen (UE) sind konkrete Aufgabenstellungen rechnerisch, konstruktiv oder experimentell zu bearbeiten.
 - 3. Seminare (SE) dienen der wissenschaftlichen Diskussion. Von den Studierenden werden eigene Beiträge geleistet.
 - 4. Exkursionen (EX) tragen zur Veranschaulichung und Vertiefung der erworbenen Kenntnisse, Fertigkeiten und Kompetenzen bei.
 - 5. Integrierte Lehrveranstaltungen (IV) sind Kombinationen aus der Vermittlung theoretischer Inhalte mit Lehrveranstaltungen gemäß Z 2 bis 4, die didaktisch eng miteinander verknüpft sind und gemeinsam beurteilt werden. Integrierte Lehrveranstaltungen sind innerhalb eines Semesters abzuschließen.
 - Vorlesungen mit integrierten Übungen (VU) sind Lehrveranstaltungen, die aus einem prüfungsimmanenten Übungsteil und einem Vorlesungsteil bestehen, der in einem Prüfungsakt geprüft wird. Der Übungs- und der Vorlesungsteil werden gemeinsam beurteilt. Die positive Absolvierung des

- Übungsteils ist Voraussetzung für den Antritt zur Teilprüfung über den Vorlesungsteil. Der minimale Vorlesungs- bzw. Übungsanteil darf ein Viertel des Gesamtumfanges der gesamten Lehrveranstaltung nicht unterschreiten.
- (2) Melden sich bei Lehrveranstaltungen mit beschränkter Teilnahmemöglichkeit mehr Studierende an, welche die Zulassungsvoraussetzungen für diese Lehrveranstaltung erfüllen, als freie Plätze zur Verfügung stehen, sind Parallellehrveranstaltungen im erforderlichen Umfang, allenfalls auch während der lehrveranstaltungsfreien Zeit, anzubieten.
- (3) Das Verfahren zur Vergabe der Plätze für Lehrveranstaltungen mit beschränkter Teilnahmemöglichkeit und für allenfalls erforderliche Parallellehrveranstaltungen erfolgt nachfolgenden Kriterien:
 - 1. Studierende, für die die betreffende Lehrveranstaltung eine verpflichtende Lehrveranstaltung darstellt, sind vor jenen Studierenden zu reihen, für welche diese Lehrveranstaltung eine Wahllehrveranstaltung darstellt. Studierende, die die betreffende Lehrveranstaltung als freies Wahlfach absolvieren, sind an letzter Stelle zu reihen.
 - 2. Innerhalb der in Z 1 genannten Kategorien erfolgt die Reihung der Studierenden nach der Summe der bisher im jeweiligen Studium positiv absolvierten ECTS-Anrechnungspunkte. Bei gleicher Punkteanzahl erfolgt die Reihung nach dem Datum der Anmeldung zur Lehrveranstaltung.
 - 3. Studierende, welche bereits einmal zurückgestellt wurden, sind bei der nächsten Abhaltung der betreffenden Lehrveranstaltung bevorzugt aufzunehmen.

Module

- § 6a.(1) Module (M) sind Lehr- und Lerninhalte, die nach didaktischen und thematischen Kriterien zu Einheiten eines Studiums zusammengefasst werden.
- (2) Kernmodule sind Module, die für das Erreichen des Qualifikationsprofils eines Studiums verpflichtend zu absolvieren sind. Profilmodule sind Module, die nach den Vorgaben des Curriculums wählbar sind.
- (3) In einem Modul erfolgt die Überprüfung der Erreichung der Modulziele (Lernergebnisse) entweder durch die Ablegung einer Modulprüfung oder von Lehrveranstaltungsprüfungen. Ein Modul muss innerhalb eines Semesters abgeschlossen werden können.

II. Aufbau des Studiums

Dauer und Gliederung des Studiums

§ 7. Das Masterstudium Circular Engineering umfasst einen Arbeitsumfang von 120 ECTS-Anrechnungspunkten. Davon entfallen auf:

Tabelle 1: Lehrveranstaltungen und Prüfungen des Masterstudiums

Kategorie	ECTS-Anrechnungspunkte
Lehrveranstaltungen und Prüfungen aus dem verpflichtenden Modul "Sustainable Development (Modul1)"	25
Lehrveranstaltungen und Prüfungen aus wählbaren Moduln (gebundene Wahlfächer)	55
Lehrveranstaltungen aus freien Wahlfächern	10
Master Thesis, Seminar Masterarbeit, Masterprüfung	30
Summe	120

Pflichtfächer des Masterstudiums

§ 8. Die Studierenden des Masterstudiums Circular Engineering sind verpflichtet, die in Tabelle 2 angeführten Lehrveranstaltungen aus dem Modul "Sustainable Development (Modul 1a)" zu absolvieren. Die dem Modul zugeordneten Lehrveranstaltungen sind unter Angabe der Semesterstunden (SSt), der ECTS-Anrechnungspunkte (ECTS) und der empfohlenen Semesterzuordnung dargestellt. Die ungeraden Zahlen des empfohlenen Semesters beziehen sich auf das Wintersemester, die geraden auf das Sommersemester:

Tabelle 2: Lehrveranstaltungen und Prüfungen aus dem Pflichtfach

					Empf.
Modul	Bezeichnung der Lehrveranstaltung	Art	ECTS	SSt	Sem.
Sustainable	Sustainability Management	SE	4,5	3	1/3
Development	Sustainable Development: History of thought, basic concepts	VO	6	4	1/3
(Modul 1a)	and current applications				
	Sustainability - Case Study	IV	0,5	0,5	1/3
	Decision-Making and Risk Analysis	IV	4	3	1/3
	Summe		15		

Gebundene Wahlfächer des Masterstudiums

- § 9. (1) Die Studierenden des Masterstudiums Circular Engineering sind verpflichtet, einen der beiden Studienzweige "Ressource Supply" oder "Materials" zu wählen und gebundene Wahlfächer im Umfang von zumindest 55 ECTS-Anrechnungspunkten aus dem Modulangebot zu absolvieren.
- (2) Die in Tabelle 3 mit einem X gekennzeichneten Module müssen im jeweiligen Studienzweig verpflichtend gewählt werden. Mit der Kennzeichnung S (Sommer) oder W (Winter) ist ersichtlich, in welchem Semester das Modul angeboten wird.
- (3) Die gebundenen Wahlfächer sind in jedem Studienzweig aus mindestens vier und höchstens fünf verschiedenen Modulen zu wählen.

Tabelle 3: Modulangebot in den Studienzweigen

Modul	Studienzweig "Ressource Supply"	Studienzweig "Materials"
Sustainable Development (Modul1b)	W(X)	W(X)
Business Management and Logistics (Modul 2)	S	S
Mining (Modul 3)	S (X)	
Minerals (Modul 4)	W	
Polymers (Modul 5)		S
Materials Science (Modul 6)		W (X)
Metallurgy (Modul 7)		S
Plant Design and Optimization (Modul 8)	S	
Digital Waste Treatment and Analytics (Modul 9)	S	S

(5) Die den Modulen zugeordneten Lehrveranstaltungen sind unter Angabe der Semesterstunden (SSt), der ECTS-Anrechnungspunkte (ECTS) und der empfohlenen Semesterzuordnung in den Tabellen 4 - 12 dargestellt. Die ungeraden Zahlen des empfohlenen Semesters beziehen sich auf das Wintersemester, die geraden auf das Sommersemester.

- (4) Die Studierenden sind verpflichtet, aus jedem gewählten Modul zumindest 10 ECTS-Anrechnungspunkte zu absolvieren, wobei die mit * gekennzeichneten Lehrveranstaltungen der gewählten Module jedenfalls abzulegen sind.
- (6) Lehrveranstaltungen, die mehreren Modulen zugeordnet sind, können von Studierenden nur in einem Modul verwendet werden. Die Studierenden sind in diesem Fall dazu verpflichtet eine Ersatzlehrveranstaltung innerhalb eines dieser gewählten Modulen abzulegen. Welchem Modul die jeweilige Lehrveranstaltung zugeordnet wird, kann von den Studierenden entschieden werden.

Tabelle 4: Lehrveranstaltungen des Moduls 1b

Modul	Bezeichnung der Lehrveranstaltung	Art	ECTS	SSt	Empf. Sem.
Sustainable	Life Cycle Assessment — Project	IV	4	3	2
Development Modul 1b	Project Management	SE	3	2	1/3
	Design for Recycling and Ecodesign	IV	3	2	2
	Carbon Capture, Utilisation and Sequestration as climate protection measures	VO	3	2	1/3
	Logistics Strategy and Supply Chain Management	VU	3	2	1/3
	Resource Economics	VO	3	2	1/3
	Macroeconomics, Fiscal and Monetary Policy	IV	3	2	1/3
	Introduction to Data Analytics	IV	2	2	2

Tabelle 5: Lehrveranstaltungen des Moduls 2

Modul	Bezeichnung der Lehrveranstaltung	Art	ECTS	SSt	Empf. Sem.
Business	Accounting*	VO	3	2	2
Management	Accounting Exercises*	UE	2	2	2
and Logistics	Business Administration Essentials*	VO	3	2	2
(Modul 2)	General Management	SE	2	1	2
	Human Resource Management	IV	3	2	2
	Macroeconomics, Fiscal and Monetary Policy	IV	3	2	1/3
	Logistics Strategy and Supply Chain Management	VU	3	2	1/3
	Product development and innovation management	SE	1,25	1	1/3
	Safety Management Systems	VO	1,5	1	1/3
	Corporate Communication and Crisis Communication for Managers	IV	2	1,5	1/3
	Strategic Management and Marketing	VO	3	2	1/3
	Resource Economics	VO	3	2	1/3

Tabelle 6: Lehrveranstaltungen des Moduls 3

Modul	Bezeichnung der Lehrveranstaltung	Art	ECTS	SSt	Empf. Sem.
Mining (Modul	Environmental Aspects of Mineral Extraction*	VO	3	2	2
3)	Environmental Engineering in Mining, Mine Rehabilitation and Post Mining Operation*	VO	6	4	2
	Planning of Mineral Resources Projects	VO	3	2	2
	Continuous Mining Methods and Conveying Technologies in Surface and Underground Mining	VO	3	2	1
	Monitoring Techniques, Data Handling and Analysis in Mining	VO	3	2	2
	Mineral Economics	VO	3	2	1/3

Tabelle 7: Lehrveranstaltungen des Moduls 4

Modul	Bezeichnung der Lehrveranstaltung	Art	ECTS	SSt	Empf. Sem.
Minerals	Industrial and construction minerals*	VO	4	3	1/3
(Modul 4)	Laboratory exercise in building materials and ceramics 1*	UE	3	3	1/3
,	Applied Mineralogy*	VO	2,5	2	1/3
	Environmental Protection in Raw Materials Production	IV	2,5	2	2
	Sampling and Homogenisation	IV	4	3	1/3
	Bulk solids technology	IV	4	3	2
	Mineral Binders 2	VO	3	2	2
	Processing of industrial minerals	VO	3	2	2
	Processing of industriel wastes - slag, sludge, dust	VO	1,5	1	1/3
	Environmental and Waste Mineralogy	IV	2,5	2	1/3

Tabelle 8: Lehrveranstaltungen des Moduls 5

Modul	Bezeichnung der Lehrveranstaltung	Art	ECTS	SSt	Empf. Sem.
Polymers	Polymer Recycling Technology*	MO	5	4	2
(Modul 5)	Technical Biopolymers*	IV	3	2	2
	Ageing and lifetime modeling of polymers	IV	3	2	2
	Special Techniques in Polymer Processing	VU	3	2	2
	Material Selection, Qualification and Failure Analysis in	IV	4,5	3	1/3
	Plastics Engineering				
	Polymer Properties and Component Behavior	IV	3	2	1/3
	Machines and Tools for Processing of Composites	VO	2,5	2	2
	Additive Manufacturing with Polymers	MO	5	4	1/3
	Polymer Nanotechnology	VO	3	2	1/3

Tabelle 9: Lehrveranstaltungen des Moduls 6

Modul	Bezeichnung der Lehrveranstaltung	Art	ECTS	SSt	Empf. Sem.
Material	Materials Selection*	SE	2,5	2	1/3
Science (Modul 6)	Additive Manufacturing*	VO	2	1,3	1/3
	Materials for Additive Manufacturing*	VO	2	2	1/3
	Structural and Functional Ceramics I	VO	3,75	2,5	1/3
	Functional Materials	VO	3	2	1/3
	Computational data analysis in materials science	IV	2	2	1/3
	Formability of metals	IV	2,5	2	1/3
	The Art of Scientific Writing	IV	1	1	2

Tabelle 10: Lehrveranstaltungen des Moduls 7

Modul	Bezeichnung der Lehrveranstaltung	Art	ECTS	SSt	Empf. Sem.
Metallurgy	Metallurgical Project*	SE	2,5	2	2
(Modul 7)	Modul Sustainable Metals and Alloys*	MO	5	4	2
	Metallurgy	VO	3	2	1/3
	Corrosion	VO	3	2	2
	Cleanness in modern steelmaking – processes and products	VO	3	2	1/3
	Formability of metals	IV	2,5	2	1/3

Tabelle 11: Lehrveranstaltungen des Moduls 8

Modul	Bezeichnung der Lehrveranstaltung	Art	ECTS	SSt	Empf. Sem.
Plant Design	Plant Engineering I*	VO	3	2	2
and	Process- and plant safety*	VO	6	4	2
Optimization	Plant Technology I / Project	SE	3,5	2	2
(Modul 8)	Plant design and process technology for the production of building materials	VO	2	2	1/3
	Improving sustainability with Reliability Management	IV	3	2	1/3
	Plant Technology II	VO	3	2	1/3
	Applied Plant Safety	UE	1,5	1	1/3
	Integrated Energy Landscape and Decarbonization	IV	3	2	1/3

Tabelle 12: Lehrveranstaltungen des Moduls 9

Modul	Bezeichnung der Lehrveranstaltung	Art	ECTS	SSt	Empf. Sem.
Digital Waste	Waste Treatment*	VO	2,5	2	2
Treatment	Material Characterization*	UE	2	2	2
and Analytics (Modul 9)	Data Science for Engineers I*	IV	2,5	2	2
	Digitalization and Sensoric in Environmental Technology	IV	3	2	1/3
	Digital Sorting Lab	UE	4	2	1/3
	Processing of industriel wastes - slag, sludge, dust	VO	1,5	1	1/3
	Environmental and Waste Mineralogy	IV	2,5	2	1/3
	Digital Analytical Chemistry in geo-, material and environmental sciences	IV	3	2	2
	Programming in Python	IV	5	3	1/3

Freie Wahlfächer

- § 10. (1) Im Masterstudium Circular Engineering sind Lehrveranstaltungen im Umfang von 10 ECTS-Anrechnungspunkten als freie Wahlfächer zu absolvieren. Diese können aus dem Angebot aller anerkannten in- oder ausländischen postsekundären Bildungseinrichtungen frei gewählt werden und sind mit einer Leistungsbeurteilung abzuschließen.
- (2) Sofern diesen Lehrveranstaltungen keine ECTS-Anrechnungspunkte zugeordnet sind, wird jede positiv absolvierte volle Semesterstunde mit 1 ECTS-Anrechnungspunkt gewichtet. Bruchteile von Stunden mit den entsprechenden Bruchteilen der ECTS-Anrechnungspunkte.

Masterarbeit

- § 11. (1) Im Masterstudium Circular Engineering ist eine Masterarbeit anzufertigen. Diese dient dem Nachweis der Befähigung, wissenschaftliche Themen selbständig sowie inhaltlich und methodisch vertretbar zu bearbeiten. Die Aufgabenstellung ist so zu wählen, dass für die Studierende oder den Studierenden die Bearbeitung innerhalb von sechs Monaten möglich und zumutbar ist. Der Masterarbeit werden 25 ECTS-Anrechnungspunkte zugewiesen.
- (2) Das Thema der Masterarbeit ist aus den gewählten Moduln zu wählen. Die bzw. der Studierende ist berechtigt, das Thema der Masterarbeit und die Betreuerin oder den Betreuer der Masterarbeit vorzuschlagen oder aus einer Anzahl von Vorschlägen auszuwählen. Für Studierende, welche die Masterarbeit an der Montanuniversität Leoben verfassen, gelten das Thema und die Betreuerin oder der Betreuer als angenommen, wenn die Studiendekanin oder der Studiendekan nicht innerhalb eines Monats das Thema bzw. die Betreuung durch die vorgeschlagene Person untersagt.
- (3) Die Masterarbeit ist innerhalb von fünf Wochen zu beurteilen. Die erfolgte Beurteilung ist durch ein Zeugnis zu beurkunden.

(4) Begleitend zur Masterarbeit ist die Lehrveranstaltung Seminar Master thesis Circular Engineering zu absolvieren. Dem Seminar Master thesis Circular Engineering werden 3 ECTS-Anrechnungspunkte zugewiesen. Das Seminar ist von der Betreuerin oder von dem Betreuer der Masterarbeit abzuhalten und gleichzeitig mit der Masterarbeit zu beurteilen.

Defensio

- § 12. (1) Voraussetzung für die Zulassung zur Defensio ist die positive Absolvierung aller vorgeschriebenen Lehrveranstaltungen aus den Pflichtfächern, den Wahlfächern und den freien Wahlfächern, die positive Absolvierung des Seminars Master thesis Circular Engineering sowie die positive Beurteilung der Masterarbeit.
 - (2) Die abschließende Prüfung des Masterstudiums erfolgt in Form einer Defensio. Dabei handelt es sich um eine kommissionelle Prüfung, die die Verteidigung der Masterarbeit sowie eine Fachdiskussion zum wissenschaftlichen Umfeld der Masterarbeit beinhaltet..
 - (3) Der Defensio werden 2 ECTS-Anrechnungspunkte zugewiesen.
 - (4) Mit der positiven Absolvierung der Defensio wird das Masterstudium abgeschlossen.

III. Prüfungsordnung

Begriffsbestimmungen

- **§ 13.** (1) Im Rahmen der Prüfungsordnung für das Masterstudium gelten an der Montanuniversität Leoben folgende Begriffsbestimmungen:
 - 1. Mündliche Prüfungen sind Prüfungen, bei denen die Prüfungsfragen mündlich zu beantworten sind.
 - 2. Schriftliche Prüfungen sind Prüfungen, bei denen die Prüfungsfragen schriftlich zu beantworten sind.
 - 3. Einzelprüfungen sind Prüfungen, die jeweils von einzelnen Prüferinnen und Prüfern abgehalten werden.
 - 4. Kommissionelle Prüfungen sind Prüfungen, die von Prüfungssenaten abgehalten werden.
 - 5. Lehrveranstaltungsprüfungen sind Prüfungen, die dem Nachweis der Kenntnisse und Fähigkeiten dienen, die durch eine einzelne Lehrveranstaltung vermittelt wurden.
 - 6. Modulprüfungen sind Prüfungen, die dem Nachweis der Lernergebnisse (Kenntnisse, Fertigkeiten und Kompetenzen) eines Moduls dienen. Mit der positiven Beurteilung aller Teile einer Modulprüfung wird ein Modul abgeschlossen. Modulprüfungen sind von der Modulleitung abzuhalten und zu beurteilen. Bei Bedarf hat das Studienrechtliche Organ eine andere fachlich geeignete Prüferin oder einen anderen fachlich geeigneten Prüfer zu beauftragen.
 - 7. Bei Prüfungen ohne immanenten Prüfungscharakter findet die Prüfung in einem einzigen Prüfungsvorgang statt, der mündlich oder schriftlich bzw. mündlich und schriftlich stattfinden kann.
 - 8. Prüfungen mit immanentem Prüfungscharakter sind Prüfungen, bei denen die Beurteilung nicht nur auf Grund eines einzigen Prüfungsvorganges am Ende des Moduls oder der Lehrveranstaltung, sondern auch auf Grund von begleitenden Erfolgskontrollen der Teilnehmenden erfolgt;9. Alle Lehrveranstaltungen mit Ausnahme der Vorlesungen (VO) weisen immanenten Prüfungscharakter auf.
 - 10. Vorlesungen mit integrierten Übungen (VU) sind Lehrveranstaltungen, die aus einem prüfungsimmanenten Übungsteil und einem Vorlesungsteil bestehen, der in einem Prüfungsakt geprüft wird.

Prüfungsverfahren

- § 14. (1) Für das Prüfungsverfahren an der Montanuniversität Leoben gelten die Bestimmungen der §§ 20 ff des Satzungsteils Studienrechtliche Bestimmungen der Montanuniversität Leoben in der jeweils geltenden Fassung.
- (2) Die Modul- oder Lehrveranstaltungsleitung hat vor Beginn jedes Semesters die Studierenden im Studieninformationssystem MUonline über die Ziele, die Inhalte und die Methoden ihres Moduls oder ihrer Lehrveranstaltung sowie über die Inhalte, die Methoden, die Beurteilungskriterien und die Beurteilungsmaßstäbe der Modul- oder Lehrveranstaltungsprüfungen in geeigneter Weise zu informieren (§ 76 Abs. 2 UG).
- (3) Das Ergebnis von mündlichen Prüfungen an der Montanuniversität Leoben ist den Studierenden im unmittelbaren Anschluss an die Prüfung mündlich mitzuteilen.
- (4) Das Ergebnis von schriftlichen Prüfungen an der Montanuniversität Leoben ist den Studierenden längstens innerhalb von vier Wochen nach Erbringung der zu beurteilenden Leistung durch Bekanntgabe in MUonline mitzuteilen.

Wiederholung von Prüfungen

- § 15. (1) Negativ beurteilte Prüfungen dürfen viermal wiederholt werden (5 Prüfungsantritte).
- (2) Wurde eine Teilleistung einer Modulprüfung an der Montanuniversität Leoben, deren Beurteilung zumindest 40% der Gesamtbeurteilung ausmacht, negativ beurteilt, hat die oder der Studierende das Recht, diese Teilleistung einmal zu wiederholen, wobei die Wiederholung nicht als weiterer Prüfungsantritt zählt. Es sind mindestens zwei Wiederholungstermine anzubieten. Die Wiederholung von Teilleistungen eines Moduls aus dem Wintersemester ist bis zum darauffolgenden 30. September, die Wiederholung von Teilleistungen eines Moduls aus dem Sommersemester ist bis zum darauffolgenden 28. oder 29. Februar möglich. Wird das Modul bis zum 31. Oktober oder 31. März positiv abgeschlossen, ist die Anmeldung zu einem aufbauenden Modul innerhalb dieses Zeitraums zu ermöglichen.
 - (3) Für Prüfungswiederholungen gilt weiters § 43 des Satzungsteils Studienrechtliche Bestimmungen.

IV. Studienabschluss und akademischer Grad

Studienabschluss

§ 16. Mit der positiven Beurteilung aller im Curriculum vorgesehenen Lehrveranstaltungen und Prüfungen aus den Pflichtfächern, den Wahlfächern und den freien Wahlfächern sowie der positiven Beurteilung der Masterarbeit wird das Masterstudium abgeschlossen.

Beurteilung des Studienerfolgs

§ 17. (1) Anlässlich des positiven Abschlusses des Masterstudiums ist für jedes Prüfungsfach eine Fachnote zu ermitteln. Die Gesamtheit aller absolvierten freien Wahlfächer gilt dabei insgesamt als ein Prüfungsfach. Die Defensio gilt ebenfalls als selbstständiges Prüfungsfach. Zur Bestimmung der Fachnoten wird zunächst der Mittelwert der um die ECTS-Punkte gewichteten Beurteilungen innerhalb des Prüfungsfachs errechnet und die Note durch Rundung dieses Mittelwerts bestimmt, wobei bei einem Nachkommateil von 0,5 abzurunden ist. Ist keine dieser Fachnoten schlechter als "gut" und ist die Anzahl der auf "sehr gut" lautenden Fachnoten mindestens so groß wie die Anzahl der auf "gut" lautenden Fachnoten, lauten weiters die Beurteilung der Defensio und die Beurteilung der Masterarbeit auf "sehr gut", so wird für das gesamte Masterstudium das Abschlussprädikat "mit Auszeichnung bestanden" vergeben. In den übrigen Fällen wird das Abschlussprädikat "bestanden" vergeben.

- (2) Prüfungsfächer iSd Abs. 1 sind:
 - 1. Sustainable Development (Modul 1)

Sowie die im jeweiligen Studienzweig absolvierten Module:

- 2. Business Management and Logistics (Modul 2)
- 3. Mining (Modul 3)
- 4. Minerals (Modul 4)
- 5. Polymers (Modul 5)
- 6. Material Science (Modul 6)
- 7. Metallurgy (Modul 7)
- 8. Plant Design and Optimization (Modul 8)
- 9. Digital Waste Treatment and Analytics (Modul 9)

Akademischer Grad

§ 18. An Absolventinnen und Absolventen des Masterstudiums Circular Engineering wird der akademische Grad "Master of Science", abgekürzt "MSc", verliehen.

V. Schlussbestimmungen

Inkrafttreten

- § 19. (1) Diese Verordnung tritt am 1. Oktober 2022 in Kraft.
- (2) Die Änderung des Curriculums in der Fassung des Mitteilungsblattes vom 12.06.2023, Stück Nr. 147, tritt am 1. Oktober 2023 in Kraft.
- (3) Die Änderung des Curriculums in der Fassung des Mitteilungsblattes vom 12.06.2024, Stück Nr. 167, tritt am 1. Oktober 2024 in Kraft.
- (4) Die Änderung des Curriculums in der Fassung des Mitteilungsblattes vom 05.06.2025, Stück Nr. 175, tritt am 1. Oktober 2025 in Kraft.

Übergangsbestimmungen

- § 19. (1) Äquivalenzliste zur Änderung des Curriculums 2023:
- Eine nach der Stammfassung des Curriculums (2022) positiv abgelegte Prüfung der linken Spalte wird Studierenden für die in derselben Zeile der rechten Spalte aufgelistete Prüfung des Anhangs III anerkannt.
- (2) Äquivalenzliste zur Änderung des Curriculums 2024:
- Eine nach der Novelle des Curriculums MBI 147. Stück 2022/2023 Nr 207 positiv abgelegte Prüfung der linken Spalte wird Studierenden für die in derselben Zeile der rechten Spalte aufgelistete Prüfung des Anhangs III anerkannt.
- (3) Lehrveranstaltungen aus Moduln, welche nach den Curricula Stammfassung des Curriculums (2022) und Novelle MBI 147. Stück 2022/2023 Nr 207 positiv abgelegt wurden, werden auf jeden Fall anerkannt. Die Zuordnung zu Moduln des aktuellen Curriculums obliegt dem Studienrechtlichen Organ.
- (4) Studierende, die vor dem 1. Oktober 2025 zum Masterstudium Circular Engineering zugelassen wurden, sind berechtigt, dieses bis zum 1. Oktober 2026 idF des Curriculums MBI. 167. Stück 2023/2024 abzuschließen oder auf Antrag in das Curriculum idF der Novelle 2025 überstellt zu werden.

(4) Äquivalenzliste zur Änderung des Curriculums 2025:

Eine nach der Novelle des Curriculums MBI. Stück Nr. 167 2023/2024 positiv abgelegte Prüfung der linken Spalte wird Studierenden für die in derselben Zeile der rechten Spalte aufgelistete Prüfung des Anhangs IV anerkannt.

Anhang: Kompetenzen, Äquivalenzlisten

Für den Senat:

Der Vorsitzende:

Univ.-Prof. Dipl.-Ing. Dr.mont. Christian Mitterer

VI. Anhang

Anhang I: Die nachstehende Tabelle beschreibt die Kompetenzen, welche mit der Absolvierung der jeweiligen Module erworben werden.

Modul	Im Rahmen des Moduls erworbene hochspezialisierte Kompetenzen							
	1) Spezialwissen über							
	Nachhaltigkeitskonzepte und -ansätze							
	Circular Economy							
	Sustainable Development Goals							
	Technoökonomische Zusammenhänge							
	Ökobilanzierung (LCA)							
	Ökodesign							
	Carbon Capture, Storage and Utilisation Technologien							
Custoinable	2) Spezielle Methodenkompetenz							
Sustainable Development (Modul 1)	zur Erfassung und Analyse komplexer Problemstellungen							
	zur komplexen Entscheidungsfindung in Unternehmen							
	der Problemlösung und nachhaltigen Lösungsimplementierung							
	der ökonomischen Bewertung							
	zur Leitung und Abwicklung von Projekten							
	zum nachhaltigen entwickeln von Produkten und deren Bewertung							
	3) Fähigkeit zur Anwendung							
	der Kreislaufprozesse im Rahmen der Circular Economy							
	ökologisch-ökonomischer Verträglichkeit von Umweltprojekten							
	von ökologisch-ökonomischen Konzepten auf die Unternehmensentwicklung							
	1) Spezialwissen über							
	Managementsysteme in der Unternehmensführung							
	Unternehmenstrukturen und Organisation							
	Wirtschaftliche Konzepte im Zusammenhang mit der Globalisierung							
	Sicherheitsmanagement							
	Kommunikation und Humanressourcenmanagement							
Business Management	2) Spezielle Methodenkompetenz							
and Logistics (Modul 2)	In der Administration von Unternehmen							
	In der Strategieentwicklung von Unternehmen							
	zur Anwendung globaler Konzepte in der Ressourcenökonomie							
	3) die Möglichkeit zu Vertiefung in den Bereichen							
	Makroökonomie und Globale Konzepte der Finanzwirtschaft							
	Ressourcenökonomie							
	Kommunikationstechniken							
	Sicherheitsmanagementsysteme							

	1) Spezialwissen über						
	Umwelteinflüsse im Zusammenhang mit Bergbauprojekten						
	 Maßnahmen der Reduktion der Umwelteinflüsse vor, während und nach der Durchführung von Bergbauprojekten 						
	2) Spezielle Methodenkompetenz						
Mining (Modul 3)	 Zur systematischen Integration von Mitigationskonzepten in die Bergbauindustrie 						
	3) die Möglichkeit zu Vertiefung in den Bereichen						
	Planung und Durchführung von Bergbauprojekten						
	Anwendung Digitaler Methoden im Bergbau						
	 Verständnis des Rohstoffmarktes im Rahmen globaler Konzepte wie Angebot und Nachfrage 						
	1) Spezialwissen über						
	Die Beschaffenheit, den Abbau und die Verarbeitung von Industriemineralen						
	Umwelteinflüse und deren Mitigation im Zusammenhang mit der Beschaffung und Verarbeitung von Industriemineralen						
	2) Spezielle Methodenkompetenz						
Minorala (Madul 4)	Zur Bewertung von Baumaterialien und Keramiken im Sinne der Nachhaltigkeit						
Minerals (Modul 4)	Analytischer Methoden zur Klassifikation von Industriemineralen						
	3) die Möglichkeit zu Vertiefung in den Bereichen						
	Probenahme und Aufbereitung von Industriemineralen						
	 Umgang mit Abfallströmen aus der Industrie der Industrieminerale und deren Umwelteinflüsse 						
	Mineralische Bindemittel und deren Verwendung						

	(1) Spezialwissen über					
	Nachhaltigkeitskonzepte für die Kunststoffindustrie					
	Die Möglichkeiten des chemischen sowie mechanischen Recyclings von Polymeren					
	Biobasierte und biologisch abbaubare Polymere					
	2) Spezielle Methodenkompetenz					
	Zum Recycling von Kunststoffen und der Relevanz dieser Verfahren im Rahmen der Circular Economy					
Polymers (Modul 5)	Zur Anwendung biobasierter und/oder biologisch abbaubarer Polymere und deren Rolle in der Circular Economy					
	Zur Entwicklung von Anforderungsprofilen und deren Validierung insbesondere bei Kunststoffrecyclaten					
	3) die Möglichkeit zu Vertiefung in den Bereichen					
	Modellierung von Kunststoffbauteilen hinsichtlich mechanischer Auslegung und Optimierung sowie der Lebensdauer					
	Additive Fertigung und dessen Potential für Ressourceneffiziente Produktentwicklung					
	 Verarbeitung und spezielle Anwendungen von Hochleistungs- und Nanopolymeren 					
	(1) Spezialwissen über					
	Werkstoffklassen und deren Vor- und Nachteile					
	Eigenschaften der Werkstoffklassen und die Prinzipien der Werkstoffwahl					
	Die Möglichkeiten der Additiven Fertigung und dessen Potential für die Produktentwicklung					
	2) Spezielle Methodenkompetenz					
Materials Science (Modul 6)	 Zur systematischen Auswahl von Werkstoffen sowohl in Struktur- als auch Funktionalen Anwendungen 					
(Zur Entwicklung einer Lebensdauerabschätzung und Verlängerung jener im Sinne einer längeren Nutzbarkeit der Produkte 					
	3) die Möglichkeit zu Vertiefung in den Bereichen					
	Funktionale Werkstoffe im Bereich der Metalle, Polymere und Keramiken					
	Datenanalyse und systematischer Umgang mit Daten im Bereich der Materialwissenschaft					
	Wissenschaftliches Arbeiten im Bereich der Materialwissenschaft					

Metallurgische Prozesse und deren Umwelteinflüsse Nachhaltige Entwicklung im Bereich der Metallurgie 2) Spezielle Methodenkompetenz Zur Umsetzung von Nachhaltigkeitskonzepten im Bereich der Metallurgie und metallurgischen Prozessen Zur systematischen Auswahl von Legierungen für spezifische Anwendungsfälle 3) die Möglichkeit zu Vertiefung in den Bereichen Korrosion und deren Relevanz für die Lebensdauer und die Auslegung von Bauteilen aus Metallen Umformtechnik im Bereich der Metallurgie Reinheit von Produkten aus metallurgischen Prozessen und deren Relevanz in einer modernen Stahlproduktion (1) Spezialwissen über Die Auslegung und Optimierung im Bereich der Anlagentechnik Sicherheitssysteme und deren Anwendung im Anlagenbau 2) Spezielle Methodenkompetenz Zur Umsetzung von Konzepten der Anlagenoptimierung in der Planung technischer Anlagen Zur Bewertung von Prozessen der Verfahrenstechnik hinsichtlich ihrer Effizienz 3) die Möglichkeit zu Vertiefung in den Bereichen Verfahrenstechnische Möglichkeiten im Bereich Dekarbonisierung Anlagendesign für die Herstellung von Baustoffen Zuverlässigkeitsmanagement von Anlagen (1) Spezialwissen über Abfallströme und deren Verwertungsmöglichkeiten Anlagendesign für die Herstellung von Baustoffen Zuberlässigkeitsmanagement von Anlagen (1) Spezialwissen über Abfallströme und deren Verwertungsmöglichkeiten Anatylische Methoden zur Charakterisierung besonders im Bereich der Abfallwirtschaft Digital Waste Treatment and Analytisc (Modul 9) Zur Verwertung und Umgang mit großen Datenmengen im Bereich der Abfallwirtschaft Die zur Verwertung und Charakterisierung von Abfällen Zur Bewältigung komplexer Aufgabenstellungen im Zusammenhang mit der Digitalisierung 3) die Möglichkeit zu Vertiefung in den Bereichen Sensorgestützte Sortierung sowohl software- als auch hardwareseitig Digitalissierung Digitalissierung und Digitale Methoden in der Analytik		(1) Spezialwissen über							
2) Spezielle Methodenkompetenz 2ur Umsetzung von Nachhaltigkeitskonzepten im Bereich der Metallurgie und metallurgischen Prozessen 2ur systematischen Auswahl von Legierungen für spezifische Anwendungsfälle 3) die Möglichkeit zu Vertiefung in den Bereichen Korrosion und deren Relevanz für die Lebensdauer und die Auslegung von Bauteilen aus Metallen Umformtechnik im Bereich der Metallurgie Reinheit von Produkten aus metallurgischen Prozessen und deren Relevanz in einer modernen Stahiproduktion (1) Spezialwissen über Die Auslegung und Optimierung im Bereich der Anlagentechnik Sicherheitssysteme und deren Anwendung im Anlagenbau 2) Spezielle Methodenkompetenz Zur Umsetzung von Konzepten der Anlagenoptimierung in der Planung technischer Anlagen Zur Bewertung von Prozessen der Verfahrenstechnik hinsichtlich ihrer Effizienz 3) die Möglichkeit zu Vertiefung in den Bereichen Verfahrenstechnische Möglichkeiten im Bereich Dekarbonisierung Anlagendesign für die Herstellung von Baustoffen Zuverlässigkeitsmanagement von Anlagen (1) Spezialwissen über Abfallströme und deren Verwertungsmöglichkeiten Analytische Methoden zur Charakterisierung besonders im Bereich der Abfallwirtschaft Digital Waste Treatment and Analytics (Modul 9) Digital Waste Treatment and Analytics (Modul 9) Zur Bewältigung komplexer Aufgabenstellungen im Zusammenhang mit der Digitalisierung 3) die Möglichkeit zu Vertiefung in den Bereichen Zur Dewältigung komplexer Aufgabenstellungen im Zusammenhang mit der Digitalisierung 3) die Möglichkeit zu Vertiefung in den Bereichen Sensorgestützte Sortierung sowohl software- als auch hardwareseitig		Metallurgische Prozesse und deren Umwelteinflüsse							
2) Spezielle Methodenkompetenz 2ur Umsetzung von Nachhaltigkeitskonzepten im Bereich der Metallurgie und metallurgischen Prozessen 2ur systematischen Auswahl von Legierungen für spezifische Anwendungsfälle 3) die Möglichkeit zu Vertiefung in den Bereichen Korrosion und deren Relevanz für die Lebensdauer und die Auslegung von Bauteilen aus Metallen Umformtechnik im Bereich der Metallurgie Reinheit von Produkten aus metallurgischen Prozessen und deren Relevanz in einer modernen Stahiproduktion (1) Spezialwissen über Die Auslegung und Optimierung im Bereich der Anlagentechnik Sicherheitssysteme und deren Anwendung im Anlagenbau 2) Spezielle Methodenkompetenz Zur Umsetzung von Konzepten der Anlagenoptimierung in der Planung technischer Anlagen Zur Bewertung von Prozessen der Verfahrenstechnik hinsichtlich ihrer Effizienz 3) die Möglichkeit zu Vertiefung in den Bereichen Verfahrenstechnische Möglichkeiten im Bereich Dekarbonisierung Anlagendesign für die Herstellung von Baustoffen Zuverlässigkeitsmanagement von Anlagen (1) Spezialwissen über Abfallströme und deren Verwertungsmöglichkeiten Analytische Methoden zur Charakterisierung besonders im Bereich der Abfallwirtschaft Digital Waste Treatment and Analytics (Modul 9) Digital Waste Treatment and Analytics (Modul 9) Zur Bewältigung komplexer Aufgabenstellungen im Zusammenhang mit der Digitalisierung 3) die Möglichkeit zu Vertiefung in den Bereichen Zur Dewältigung komplexer Aufgabenstellungen im Zusammenhang mit der Digitalisierung 3) die Möglichkeit zu Vertiefung in den Bereichen Sensorgestützte Sortierung sowohl software- als auch hardwareseitig		Nachhaltige Entwicklung im Bereich der Metallurgie							
metallurgischen Prozessen		2) Spezielle Methodenkompetenz							
3) die Möglichkeit zu Vertiefung in den Bereichen • Korrosion und deren Relevanz für die Lebensdauer und die Auslegung von Bauteilen aus Metallen • Umformtechnik im Bereich der Metallurgie • Reinheit von Produkten aus metallurgischen Prozessen und deren Relevanz in einer modernen Stahlproduktion (1) Spezialwissen über • Die Auslegung und Optimierung im Bereich der Anlagentechnik • Sicherheitssysteme und deren Anwendung im Anlagenbau 2) Spezielle Methodenkompetenz • Zur Umsetzung von Konzepten der Anlagenoptimierung in der Planung technischer Anlagen • Zur Bewertung von Prozessen der Verfahrenstechnik hinsichtlich ihrer Effizienz 3) die Möglichkeit zu Vertiefung in den Bereichen • Verfahrenstechnische Möglichkeiten im Bereich Dekarbonisierung • Anlagendesign für die Herstellung von Baustoffen • Zuverlässigkeitsmanagement von Anlagen (1) Spezialwissen über • Abfallströme und deren Verwertungsmöglichkeiten • Analytische Methoden zur Charakterisierung besonders im Bereich der Abfallwirtschaft • Datenmodellierung und Umgang mit großen Datenmengen im Bereich der Abfallwirtschaft 2) Spezielle Methodenkompetenz • Zur Verwertung und Charakterisierung von Abfällen • Zur Bewältigung komplexer Aufgabenstellungen im Zusammenhang mit der Digitalisierung 3) die Möglichkeit zu Vertiefung in den Bereichen • Sensorgestützte Sortierung sowohl software- als auch hardwareseitig									
Korrosion und deren Relevanz für die Lebensdauer und die Auslegung von Bauteilen aus Metallen Umformtechnik im Bereich der Metallurgie Reinheit von Produkten aus metallurgischen Prozessen und deren Relevanz in einer modernen Stahlproduktion (1) Spezialwissen über Die Auslegung und Optimierung im Bereich der Anlagentechnik Sicherheitssysteme und deren Anwendung im Anlagenbau 2) Spezielle Methodenkompetenz Zur Umsetzung von Konzepten der Anlagenoptimierung in der Planung technischer Anlagen Zur Bewertung von Prozessen der Verfahrenstechnik hinsichtlich ihrer Effizienz die Möglichkeit zu Vertiefung in den Bereichen Verfahrenstechnische Möglichkeiten im Bereich Dekarbonisierung Anlagendesign für die Herstellung von Baustoffen Zuverlässigkeitsmanagement von Anlagen (1) Spezialwissen über Abfallströme und deren Verwertungsmöglichkeiten Analytische Methoden zur Charakterisierung besonders im Bereich der Abfallwirtschaft Digital Waste Treatment and Analytics (Modul 9) Digital Waste Treatment and Analytics (Modul 9) Zur Bewältigung und Umgang mit großen Datenmengen im Bereich der Abfallwirtschaft 2) Spezielle Methodenkompetenz Zur Verwertung und Charakterisierung von Abfällen Zur Bewältigung komplexer Aufgabenstellungen im Zusammenhang mit der Digitalisierung 3) die Möglichkeit zu Vertiefung in den Bereichen Sensorgestützte Sortierung sowohl software- als auch hardwareseitig	Metallurgy (Modul 7)	Zur systematischen Auswahl von Legierungen für spezifische Anwendungst							
Bauteilen aus Metallen Umformtechnik im Bereich der Metallurgie Reinheit von Produkten aus metallurgischen Prozessen und deren Relevanz in einer modernen Stahlproduktion (1) Spezialwissen über Die Auslegung und Optimierung im Bereich der Anlagentechnik Sicherheitssysteme und deren Anwendung im Anlagenbau Spezielle Methodenkompetenz Zur Umsetzung von Konzepten der Anlagenoptimierung in der Planung technischer Anlagen Zur Bewertung von Prozessen der Verfahrenstechnik hinsichtlich ihrer Effizienz die Möglichkeit zu Vertiefung in den Bereichen Verfahrenstechnische Möglichkeiten im Bereich Dekarbonisierung Anlagendesign für die Herstellung von Baustoffen Zuverlässigkeitsmanagement von Anlagen (1) Spezialwissen über Abfallströme und deren Verwertungsmöglichkeiten Analytische Methoden zur Charakterisierung besonders im Bereich der Abfallwirtschaft Digital Waste Treatment and Analytics (Modul 9) Digital Waste Treatment and Analytics (Modul 9) Zur Verwertung und Charakterisierung von Abfällen Zur Bewältigung komplexer Aufgabenstellungen im Zusammenhang mit der Digitalisierung die Möglichkeit zu Vertiefung in den Bereichen Sensorgestützte Sortierung sowohl software- als auch hardwareseitig		3) die Möglichkeit zu Vertiefung in den Bereichen							
Reinheit von Produkten aus metallurgischen Prozessen und deren Relevanz in einer modernen Stahlproduktion (1) Spezialwissen über Die Auslegung und Optimierung im Bereich der Anlagentechnik Sicherheitssysteme und deren Anwendung im Anlagenbau 2) Spezielle Methodenkompetenz Zur Umsetzung von Konzepten der Anlagenoptimierung in der Planung technischer Anlagen Zur Bewertung von Prozessen der Verfahrenstechnik hinsichtlich ihrer Effizienz die Möglichkeit zu Vertiefung in den Bereichen Verfahrenstechnische Möglichkeiten im Bereich Dekarbonisierung Anlagendesign für die Herstellung von Baustoffen Zuverlässigkeitsmanagement von Anlagen (1) Spezialwissen über Abfallströme und deren Verwertungsmöglichkeiten Analytische Methoden zur Charakterisierung besonders im Bereich der Abfallwirtschaft Datenmodellierung und Umgang mit großen Datenmengen im Bereich der Abfallwirtschaft 2) Spezielle Methodenkompetenz Zur Verwertung und Charakterisierung von Abfallen Zur Bewältigung komplexer Aufgabenstellungen im Zusammenhang mit der Digitalisierung d) die Möglichkeit zu Vertiefung in den Bereichen Sensorgestützte Sortierung sowohl software- als auch hardwareseitig									
einer modernen Stahlproduktion (1) Spezialwissen über Die Auslegung und Optimierung im Bereich der Anlagentechnik Sicherheitssysteme und deren Anwendung im Anlagenbau 2) Spezielle Methodenkompetenz Ezur Umsetzung von Konzepten der Anlagenoptimierung in der Planung technischer Anlagen Ezur Bewertung von Prozessen der Verfahrenstechnik hinsichtlich ihrer Effizienz die Möglichkeit zu Vertiefung in den Bereichen Verfahrenstechnische Möglichkeiten im Bereich Dekarbonisierung Anlagendesign für die Herstellung von Baustoffen Zuverlässigkeitsmanagement von Anlagen (1) Spezialwissen über Abfallströme und deren Verwertungsmöglichkeiten Analytische Methoden zur Charakterisierung besonders im Bereich der Abfallwirtschaft Datenmodellierung und Umgang mit großen Datenmengen im Bereich der Abfallwirtschaft Digital Waste Treatment and Analytics (Modul 9) Zur Verwertung und Charakterisierung von Abfällen Zur Bewältigung komplexer Aufgabenstellungen im Zusammenhang mit der Digitalisierung 3) die Möglichkeit zu Vertiefung in den Bereichen Sensorgestützte Sortierung sowohl software- als auch hardwareseitig		Umformtechnik im Bereich der Metallurgie							
Plant Design and Optimization (Modul 8) Plant Design and Optimization (Modul 9) Plant Design and Anlagence (Modul 9) Plant Design and Anlage									
Plant Design and Optimization (Modul 8) Plant Digital Waste Treatment and Analytics (Modul 9)		(1) Spezialwissen über							
Plant Design and Optimization (Modul 8) 2) Spezielle Methodenkompetenz • Zur Umsetzung von Konzepten der Anlagenoptimierung in der Planung technischer Anlagen • Zur Bewertung von Prozessen der Verfahrenstechnik hinsichtlich ihrer Effizienz 3) die Möglichkeit zu Vertiefung in den Bereichen • Verfahrenstechnische Möglichkeiten im Bereich Dekarbonisierung • Anlagendesign für die Herstellung von Baustoffen • Zuverlässigkeitsmanagement von Anlagen (1) Spezialwissen über • Abfallströme und deren Verwertungsmöglichkeiten • Analytische Methoden zur Charakterisierung besonders im Bereich der Abfallwirtschaft • Datenmodellierung und Umgang mit großen Datenmengen im Bereich der Abfallwirtschaft 2) Spezielle Methodenkompetenz • Zur Verwertung und Charakterisierung von Abfällen • Zur Bewältigung komplexer Aufgabenstellungen im Zusammenhang mit der Digitalisierung 3) die Möglichkeit zu Vertiefung in den Bereichen • Sensorgestützte Sortierung sowohl software- als auch hardwareseitig		Die Auslegung und Optimierung im Bereich der Anlagentechnik							
Plant Design and Optimization (Modul 8) • Zur Umsetzung von Konzepten der Anlagenoptimierung in der Planung technischer Anlagen • Zur Bewertung von Prozessen der Verfahrenstechnik hinsichtlich ihrer Effizienz 3) die Möglichkeit zu Vertiefung in den Bereichen • Verfahrenstechnische Möglichkeiten im Bereich Dekarbonisierung • Anlagendesign für die Herstellung von Baustoffen • Zuverlässigkeitsmanagement von Anlagen (1) Spezialwissen über • Abfallströme und deren Verwertungsmöglichkeiten • Analytische Methoden zur Charakterisierung besonders im Bereich der Abfallwirtschaft • Datenmodellierung und Umgang mit großen Datenmengen im Bereich der Abfallwirtschaft 2) Spezielle Methodenkompetenz • Zur Verwertung und Charakterisierung von Abfällen • Zur Bewältigung komplexer Aufgabenstellungen im Zusammenhang mit der Digitalisierung 3) die Möglichkeit zu Vertiefung in den Bereichen • Sensorgestützte Sortierung sowohl software- als auch hardwareseitig		Sicherheitssysteme und deren Anwendung im Anlagenbau							
Plant Design and Optimization (Modul 8) 2ur Bewertung von Prozessen der Verfahrenstechnik hinsichtlich ihrer Effizienz 3) die Möglichkeit zu Vertiefung in den Bereichen • Verfahrenstechnische Möglichkeiten im Bereich Dekarbonisierung • Anlagendesign für die Herstellung von Baustoffen • Zuverlässigkeitsmanagement von Anlagen (1) Spezialwissen über • Abfallströme und deren Verwertungsmöglichkeiten • Analytische Methoden zur Charakterisierung besonders im Bereich der Abfallwirtschaft • Datenmodellierung und Umgang mit großen Datenmengen im Bereich der Abfallwirtschaft 2) Spezielle Methodenkompetenz • Zur Verwertung und Charakterisierung von Abfällen • Zur Bewältigung komplexer Aufgabenstellungen im Zusammenhang mit der Digitalisierung 3) die Möglichkeit zu Vertiefung in den Bereichen • Sensorgestützte Sortierung sowohl software- als auch hardwareseitig									
Zur Bewertung von Prozessen der Verfahrenstechnik hinsichtlich ihrer Effizienz 3) die Möglichkeit zu Vertiefung in den Bereichen Verfahrenstechnische Möglichkeiten im Bereich Dekarbonisierung Anlagendesign für die Herstellung von Baustoffen Zuverlässigkeitsmanagement von Anlagen (1) Spezialwissen über Abfallströme und deren Verwertungsmöglichkeiten Analytische Methoden zur Charakterisierung besonders im Bereich der Abfallwirtschaft Datenmodellierung und Umgang mit großen Datenmengen im Bereich der Abfallwirtschaft 2) Spezielle Methodenkompetenz Zur Verwertung und Charakterisierung von Abfällen Zur Bewältigung komplexer Aufgabenstellungen im Zusammenhang mit der Digitalisierung 3) die Möglichkeit zu Vertiefung in den Bereichen Sensorgestützte Sortierung sowohl software- als auch hardwareseitig									
Verfahrenstechnische Möglichkeiten im Bereich Dekarbonisierung Anlagendesign für die Herstellung von Baustoffen Zuverlässigkeitsmanagement von Anlagen (1) Spezialwissen über Abfallströme und deren Verwertungsmöglichkeiten Analytische Methoden zur Charakterisierung besonders im Bereich der Abfallwirtschaft Datenmodellierung und Umgang mit großen Datenmengen im Bereich der Abfallwirtschaft 2) Spezielle Methodenkompetenz Zur Verwertung und Charakterisierung von Abfällen Zur Bewältigung komplexer Aufgabenstellungen im Zusammenhang mit der Digitalisierung 3) die Möglichkeit zu Vertiefung in den Bereichen Sensorgestützte Sortierung sowohl software- als auch hardwareseitig	Optimization (would o)	Zur Bewertung von Prozessen der Verfahrenstechnik hinsichtlich ihrer Effizier							
Anlagendesign für die Herstellung von Baustoffen Zuverlässigkeitsmanagement von Anlagen (1) Spezialwissen über		3) die Möglichkeit zu Vertiefung in den Bereichen							
Zuverlässigkeitsmanagement von Anlagen (1) Spezialwissen über		Verfahrenstechnische Möglichkeiten im Bereich Dekarbonisierung							
(1) Spezialwissen über Abfallströme und deren Verwertungsmöglichkeiten Analytische Methoden zur Charakterisierung besonders im Bereich der Abfallwirtschaft Datenmodellierung und Umgang mit großen Datenmengen im Bereich der Abfallwirtschaft 2) Spezielle Methodenkompetenz Zur Verwertung und Charakterisierung von Abfällen Zur Bewältigung komplexer Aufgabenstellungen im Zusammenhang mit der Digitalisierung 3) die Möglichkeit zu Vertiefung in den Bereichen Sensorgestützte Sortierung sowohl software- als auch hardwareseitig		Anlagendesign für die Herstellung von Baustoffen							
 Abfallströme und deren Verwertungsmöglichkeiten Analytische Methoden zur Charakterisierung besonders im Bereich der Abfallwirtschaft Datenmodellierung und Umgang mit großen Datenmengen im Bereich der Abfallwirtschaft Spezielle Methodenkompetenz Zur Verwertung und Charakterisierung von Abfällen Zur Bewältigung komplexer Aufgabenstellungen im Zusammenhang mit der Digitalisierung die Möglichkeit zu Vertiefung in den Bereichen Sensorgestützte Sortierung sowohl software- als auch hardwareseitig 		Zuverlässigkeitsmanagement von Anlagen							
Analytische Methoden zur Charakterisierung besonders im Bereich der Abfallwirtschaft Datenmodellierung und Umgang mit großen Datenmengen im Bereich der Abfallwirtschaft 2) Spezielle Methodenkompetenz Zur Verwertung und Charakterisierung von Abfällen Zur Bewältigung komplexer Aufgabenstellungen im Zusammenhang mit der Digitalisierung 3) die Möglichkeit zu Vertiefung in den Bereichen Sensorgestützte Sortierung sowohl software- als auch hardwareseitig		(1) Spezialwissen über							
Abfallwirtschaft Digital Waste Treatment and Analytics (Modul 9) Digital Waste Treat		Abfallströme und deren Verwertungsmöglichkeiten							
Digital Waste Treatment and Analytics (Modul 9) • Zur Verwertung und Charakterisierung von Abfällen • Zur Bewältigung komplexer Aufgabenstellungen im Zusammenhang mit der Digitalisierung 3) die Möglichkeit zu Vertiefung in den Bereichen • Sensorgestützte Sortierung sowohl software- als auch hardwareseitig									
 Zur Verwertung und Charakterisierung von Abfällen Zur Bewältigung komplexer Aufgabenstellungen im Zusammenhang mit der Digitalisierung 3) die Möglichkeit zu Vertiefung in den Bereichen Sensorgestützte Sortierung sowohl software- als auch hardwareseitig 									
 and Analytics (Modul 9) Zur Verwertung und Charakterisierung von Abfällen Zur Bewältigung komplexer Aufgabenstellungen im Zusammenhang mit der Digitalisierung 3) die Möglichkeit zu Vertiefung in den Bereichen Sensorgestützte Sortierung sowohl software- als auch hardwareseitig 		2) Spezielle Methodenkompetenz							
Digitalisierung 3) die Möglichkeit zu Vertiefung in den Bereichen • Sensorgestützte Sortierung sowohl software- als auch hardwareseitig		Zur Verwertung und Charakterisierung von Abfällen							
Sensorgestützte Sortierung sowohl software- als auch hardwareseitig									
		3) die Möglichkeit zu Vertiefung in den Bereichen							
Digitalisierung und Digitale Methoden in der Analytik		Sensorgestützte Sortierung sowohl software- als auch hardwareseitig							
,		Digitalisierung und Digitale Methoden in der Analytik							
Anwendungsorientiertes Programmieren		Anwendungsorientiertes Programmieren							

Anhang II zu §19: Äquivalenzliste

Eine nach der Stammfassung positiv abgelegte Prüfung der linken Spalte wird Studierenden für die in derselben Zeile der rechten Spalte aufgelistete(n) Prüfung(en) anerkannt.

Positiv abgelegte Prüfungen nach der Stammfassung des Masterstudiums Circular Engineering, verlautbart im Mitteilungsblatt der Montanuniversität Leoben am 09.06.2022, Stück Nr. 156					Äquivalente Lehrveranstaltungen des Masterstudiums Circular Engineering in der vorliegenden Fassung				
LV-Nr.	Veranstaltungsbezeichnun g	LV- Art	SST	ECT S	LV-Nr.	Veranstaltungsbezeichnun g	LV- Art	SST	ECT S
200.024	Digitalisation in Sustainable Development	IV	2	3	600.125	Advanced Management Sciences 1	SE	1	1
					600.118	Introduction to Data Analytics	IV	2	2
	Primary raw materials extraction technology		4	5,5	200.096	Introduction in Mining	VO	1,5	2,5
200.011		VO			200.111	Continuous Mining Methods and Conveying Technologies in Surface and Underground Mining	VO	2	3
200.012	Digitalisation in Primary Raw Materials	VO	2	3	200.118	Monitoring Techniques, Data Handling and Analysis in Mining	VO	2	3
580.034034	Recycling of Secondary Raw Materials I	VO	3	3	515.208	Recycling of mineral wastes	VO	2	2,5
200200.040	Recycling of Secondary Raw Materials II	UE	3	4	180.014	Processing of industrial wastes – slag, sludge, dust	VO	1	1,5
210.026	Technical Biopolymers	IV	2	3	210.036	Ageing and Lifetime Modeling of Polymers	IV	2	3

Anhang III: Äquivalenzliste zur Änderung des Curriculums 2024

Gemäß dem Curriculum 147. Stück 2022/2023 Nr 207 positiv absolvierte Moduln der linken Spalte werden Studierenden für die in derselben Zeile der rechten Spalte aufgelisteten Module anerkannt.

Module des Masterstudiums Circular Engineering idFd der Novelle 2023	ECTS	Äquivalente Module des Masterstudiums Circular Engineering idFd der Änderung 2024 im angegebenen Umfang	ECTS
Sustainable Development (Modul 1)	27	<u>_</u>	
Digitalisation in Sustainable Development (Modul 6)	3	Sustainable Development (Modul 1)	30
Primary Raw Materials (Modul 2)	24	Minerals (Modul 4)	14
Digitalisation in Primary Raw Materials (Modul 6)	3	Mining (Modul 3)	13
Secondary Raw Materials and Recycling (Modul 3)	24	Digital Waste Treatment and Analytics (Modul 9)	15
Digitalisation in Secondary Raw Materials and Recycling (Modul 6)	3	Polymers (Modul 5)	12
Process Engineering (Modul 4)	24	Plant Design and Optimization (Modul 8)	14
Digitalisation in Process Engineering (Modul 6)	3	Metallurgy (Modul 7)	13
Materials (Modul 5)	24	Materials Science (Modul 6)	15
Digitalisation in Materials (Modul 6)	3	Polymers (Modul 5)	12

Anhang IV: Eine gemäß dem Curriculum vom 12.06.2024, Stück Nr. 167 positiv abgelegte Prüfung der linken Spalte wird Studierenden für die in derselben Zeile der rechten Spalte aufgelistete(n) Prüfung(en) anerkannt.

Positiv abgelegte Prüfungen nach der Stammfassung des Masterstudiums Circular Engineering, verlautbart im Mitteilungsblatt der Montanuniversität Leoben am 12.06.2024, Stück Nr. 167				Äquivalente Lehrveranstaltungen des Masterstudiums Circular Engineering in der vorliegenden Fassung					
LV-Nr.	Veranstaltungsbezeichnung	LV- Art	SST	ECTS	LV-Nr.	Veranstaltungsbezeichnung	LV- Art	SST	ECTS
350.082 350.081	Recycling Technology of Polymers Recycling Technology of Polymers	VU UE	2 2	3 2	nnn.nnn	Polymer Recycling Technology	МО	4	5
350.300	Special Techniques in Polymer Processing	VO	2	3	350.301	Special Techniques in Polymer Processing	VU	2	3
220.028 220.029	Sustainable Metals and Alloys Sustainable Metals and Alloys - Exercise	VO UE	2	3 2	nnn.nnn	Modul Sustainable Metals and Alloys	МО	4	5
350.649 350.659	Additive Manufacturing with Polymers Additive Manufacturing with Polymers - Lab Course	VU UE	2 2	3 2	nnn.nnn	Additive Manufacturing with Polymers	МО	4	5